
Analog Computer Applications

Trajectory optimization on a hybrid
computer

1 Introduction

The idea of coupling an analog computer with a digital computer, thus
creating a so-called hybrid computer, is by no means new, but neverthe-
less intriguing as it makes it possible to combine the best of both worlds
of computing. The first hybrid computers were built in the mid-1950s
to aid in aerospace research.1

The following application note describes the solution of a simple shell-
trajectory problem with an Analog Paradigm prototype hybrid computer.
This computer is based on the Analog Paradigm Model-1 in which the
control unit (CU) has been replaced by a so-called Hybrid Controller,
HyCon for short. This module plugs into the analog computer’s back-
plane and connects to a digital computer by means of an USB-interface.
It allows complete control of the analog computer, automatic readout
of all computing elements, control of digital potentiometers etc. This
module is supported by means of a Perl module, HyCon.pm, that o↵ers
an object oriented interface to the hybrid controller.

1Cf. [Ulmann, 2013][pp. 151 ↵.]

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

2 The shell trajectory problem

The problem under consideration is extremely simple: The trajectory of
an idealized shell experiencing no drag or other external influences is to
be simulated in order to determine the initial velocity v0 necessary to hit
a target at a given position (xtarget, ytarget). The elevation of the cannon
is fixed at some angle ↵. The cannon is mounted at an elevation of y0
while the target is at sea level elevation i. e. ytarget = 0.

The x- and y-components of the velocity of the shell are thus

ẋ = v0 sin(↵) and

ẏ = cos(↵)� gt

with g and t denoting the gravitational acceleration and time. These two
variables readily yield the x- and y-components of the shell’s position by
integration.

3 Analog computer program

The resulting computer setup is quite straight-forward and shown in
figure 1.

Here DPT0 denotes the digital potentiometer number 0 under control
of the hybrid controller. All potentiometers are bu↵ered so that they can
be connected in series. The outputs of this circuit are as follows:

x and y: Position of the shell – these two outputs can be used to control
a display set to XY-mode.

�x: This is the x distance of the shell and its target.

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

�1 v0

DPT0

�1 g

cos(↵)

sin(↵)

+1

xscale

x

+1

xtarget

�1

y0

�x

y

HLT

Figure 1: Setup of the analog computer for the basic trajectory problem

HLT: This logical output from a comparator is used to trigger the ex-
ternal halt input of the hybrid controller when the shell hits ground
level. Therefore it is necessary that the height of the cannon satis-
fies y0 > 0. Otherwise the comparator would trigger halt before the
actual flight of the shell begins.

The patched analog computer (a prototype as can be easily seen) is
shown in 2.

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

Figure 2: Setup of the analog computer program on a prototype hybrid computer

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

4 Digital computer program

The digital part of the hybrid computer is programmed in Perl using the
HyCon.pm module developed by Analog Paradigm. This module requires
a configuration YML-file as shown below in which the particular setup
of the analog computer being used is specified. The sections shown
are mandatory and specify the USB (serial) connection, the number
of digital potentiometers and their resolution in bits, the calibration
data required for the analog-digital-converter (factory supplied data),
the various device types of the analog computing elements, and finally
the names of computing elements which are to be readout by the hybrid
controller.

trajectory.pl

1 serial:

2 port: /dev/cu.usbmodem431

3 bits: 8

4 baud: 250000

5 parity: none

6 stopbits: 1

7 poll_interval: 1000

8 poll_attempts: 200

9 potentiometers:

10 number: 8

11 resolution: 10

12 calibration:

13 analog_in:

14 - 13202, 4271, 22133

15 - 13208, 4278, 22137

16 - 13204, 4271, 22137

17 readout: 13195, 4271, 22117

18 types:

19 0: PS

20 1: SUM8

21 2: INT4

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

22 3: PT8

23 4: CU

24 5: MLT8

25 6: MDS2

26 7: CMP4

27 elements:

28 SUM8-0: 0x0160
trajectory.pl

The overall control program is shown in the following listing. After
using all of the required libraries, the terminal window is configured and
cleared. Then a new HyCon-object is created based on the configuration
data supplied in the corresponding YML-file. Next, the hybrid controller
is reset and halt-on-overflow is disabled while the external halt input is
enabled. This input is connected to the HLT-output of the comparator
shown in figure 1. The initial-condition- and operation-times are set to
20 and 30 milliseconds. In addition to this the initial velocity v0 is set
to zero.

Then follows the central loop in which the analog computer performs
a single simulation run over and over again until either the operation-
time is exceeded or the external halt condition is met. After one of these
simulation runs, the output of summer SUM-0, corresponding to �x, is
read out.

Based on this value, a new v0 is computed by setting

v0 := v0 +�x · c

where c ($conv in the program source) controls the convergence speed
of the optimization process. The current setting is clearly suboptimal
but results in a nice output on an XY-display where the optimization
process can be seen quite well. A more realistic setup would, of course,

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

involve a di↵erent update scheme for v0 as the linear approach shown
above. A screen shot of a solution obtained by this setup is shown in
figure 3.

trajectory.pl

1 use strict;

2 use warnings;

3

4 use lib ’../..’; # HyCon lib path

5 use File::Basename;

6 use Term::ANSIScreen;

7 use HyCon;

8

9 $| = 1; # No stdout buff.

10 my $console = Term::ANSIScreen->new(); # We need CLS

11 $console->Cls();

12

13 (my $config_filename = basename($0)) =~ s/\.pl$//;

14 my $ac = HyCon->new("$config_filename.yml"); # New HyCon-object

15

16 $ac->reset();

17 $ac->disable_ovl_halt(); # No overflow halt

18 $ac->enable_ext_halt(); # but ext. halt

19

20 my ($ic_time, $op_time) = (20, 30); # Times in ms

21 $ac->set_ic_time($ic_time);

22 $ac->set_op_time($op_time);

23

24 my ($v_0, $conv) = (0, .1); # v_0, conv. speed

25 while (1) {

26 my $halt = $ac->single_run_sync(); # Single run

27 my $delta = $ac->read_element(’SUM8-0’)->{value}; # Read distance

28

29 my $increment = $conv * $delta; # Comp. increment

30 printf("V0 = %+0.4f\tDelta = %+0.4f\tIncrement: %+0.4f\r",

31 $v_0, $delta, $increment);

32 $v_0 += $increment; # v_0 for shell

33 $ac->set_pt(0, $v_0); # Set DPT-0

34 }
trajectory.pl

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

Analog Computer Applications

Figure 3: Typical solution of the simple shell-trajectory problem

References

[Ulmann, 2013] Bernd Ulmann, Analog Computing, Oldenbourg
Verlag, 2013

Dr. Bernd Ulmann, Issue #13, 07-JAN-2018

