
Analog Computer Applications

The Hindmarsh-Rose-model of neuronal
bursting

Beginning in the early 20th century, the behaviour of neurons has been described

by increasingly realistic mathematical models. The very first of these models is called

integrate-and-fire and is due to Lous Lapicque who developed it in 1907. A better

model was developed in the early 1960s by Richard FitzHugh and J. Nagumo

and is described by

v̇ = v − v3

3
− w + Iext and

τ ω̇ = v + a+−bw.

This model is still pretty simple and it can be shown that is basically equivalent to the

van der Pol equation

ÿ + µ
(
y2 − 1

)
ẏ + y = 0,

which was devised by Balthasar van der Pol in 1920 as a result of his pioneering

work on vacuum tubes and oscillator circuits. Accordingly, the FitzHugh-Nagumo

model is basically a relaxation oscillator1 controlled by an external stimulus Iext.

A much more interesting model is due to Hindmarsh and Rose2 and consists of

three coupled differential equations

ẋ = −ax3 + bx2 + y − z + Iext (1)

ẏ = −dx2 + c− y (2)

ż = r(s(x− xr)− z) (3)

with the parameters a = 1, b = 3, c = 1, d = 5, r = 10−3, s = 4, xr = −8
5
and initial

conditions of 2 for all three integrators in the final setup.3

1In contrast to a harmonic oscillator which is typically based on an amplifier with suitable feedback, running in
resonance mode, a relaxation oscillator switches abruptly between charge and discharge mode and thus yields non-
harmonic output signals.

2See [Hindmarsh et al. 1982] and [Hindmarsh et al. 1984].
3See [Izhikevich 2010] for a thorough introduction to dynamical systems in neuroscience.
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Figure 1: Unscaled Hindmarsh-Rose model Figure 2: After first scaling step

A quick numeric integration yields the solution shown in figure 1. Obviously, the

system must be scaled in order to be implemented on an analog computer. The

variables x, y, and z all exceed the standard machine unit interval of [−1, 1] by far.

First, we scale x by λx = 1
2
:4

ẋ =
1

2

(
−8ax3 + 4bx2 + y − z + Iext

)
= −4ax3 + 2bx2 +

y

2
− z

2
+ Iext

ẏ = −4dx2 + c− y

ż = r(s(2x− xr)− z)

Iext has also been scaled by λx and is now 1, which is very convenient. The behaviour

of the system after this first scaling step is shown in figure 2. x is now well within

[−1, 1].

4Scaled variables are not denoted by a hat or star in the following as this would clutter the formulas considerable.
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z can also be scaled with a factor λz =
1
2
yielding the following system of equations:

ẋ = −4ax3 + 2bx2 +
y

2
− z + Iext

ẏ = −4dx2 + c− y

ż =
1

2
(r(s(2x− xr)− 2z))

= r
(
s
(
x− xr

2

)
− z

)
The output of this system is shown in figure 3. All that is now left to do is scaling y

with a “nice” value such as λz =
1
15
:

ẋ = −4ax3 + 2bx2 + 7.5y − z + Iext

ẏ =
1

15

(
−4dx2 + c− 15y

)
= −0.2664dx2 +

c

15
− y

ż = r
(
s
(
x− xr

2

)
− z

)
The initial condition of the y integrator is now so small that it can be safely set to 0.

Since coefficients on the LUCIDAC can be set in the range [−10, 10], the parameters

a, b, c, d, r, s, and xr must not be scaled. a = 1 can be omitted altogether, and

c can be replaced by its scaled value of λyc = λy. b = 3 and the inverse scaling

factor 1
λx

can be combined to a constant 6. The same can be done with the product

0.2664d ≈ 1.332.

Multiplying out the equation for ż yields

ż = r
(
s
(
x− xr

2

)
− z

)
= rsx− rsxr

2
− rz.

With all constants taken into account we get

ż = 0.004x+ 0.0032− z

1000
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Figure 3: After second scaling step Figure 4: After third scaling step

yielding the following system of scaled equations:

ẋ = −4x3 + 6x2 + 7.5y − z + Iext

ẏ = −1.332x2 + 0.0666− y

ż = 0.004x+ 0.0032− z

1000

Making use of different time scale factors of the integrators, the very small coeffi-

cients in the last equation can be scaled up to more convenient values. Without loss

of generality, let k0x = k0y = 104 and k0z = 102,5 yielding

ẋ = −4x3 + 6x2 + 7.5y − z + Iext k0x = 104, IC = 1

ẏ = −1.332x2 + 0.0666− y k0y = 104, IC = 0

ż = 0.4x+ 0.32− 0.1z k0z = 102, IC = 1

These equations can now be setup on an analog or hybrid computer such as THE

ANALOG THING, a Model-1, or a LUCIDAC as shown in figure 5.
5The important thing here is that the two k0 values differ by a factor of 100, so on a that k0x = k0y = 103 (fast)

and k0z = 10 (slow) would work as well.
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Figure 5: Scaled analog computer setup for the Hindmarsh-Rose model
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Figure 6: Typical result of spiking neuron simulation

Figure 6 shows a typical result obtained by this analog computer circuit with Iext =

1. The yellow trace depicts the output potential of the neuron (x), the green trace

corresponds to the amount of potassium channels (y), and the orange channel shows

z.
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