
Analog Computer Applications

Quantum Mechanical Two-Body Problem
with Gaussian potential

Figure 1: Two heavy (M) particles and one light (m) particle in a three-body system

This application note is inspired by the work described in [Thies et al. 2022]. In

this paper the authors develop a numerical method to calculate binding energies of

a quantum mechanical three-body system efficiently. This three-body system is com-

posed of two heavy and one light particle. In figure 1 the system is displayed with its

two-body (heavy/light) subsystems marked by dashed ellipses. The routine to calcu-

late binding energies for the three-body system first solves the two-body subsystem.

This application note aims to reproduce the findings in [Thies et al. 2022] for the

two-body systems using an analog computer.

1 Implementation

The Schrödinger equation for the two-body system is given by ([Thies et al. 2022]

eq. (1)) [
−1

2
∆ξ − v0f(ξ)

]
ψ(ξ) = Eψ(ξ), (1)

where ξ is the distance between the two particles, E their energy, ψ(ξ) the wave

function of the system, −v0f(ξ) an attractive potential between the particles, and
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Figure 2: Analog computer program solving the Schrödinger equation with Gaussian potential.

∆ξ the Laplace operator. The depth of the potential is given by v0 and the shape is

defined by a Gaussian function

f(ξ) = exp(−ξ2). (2)

With a Gaussian potential eq. 1 becomes symmetric under the transformation

ξ → −ξ and the solutions are either even (ψ(ξ) = ψ(−ξ)) or odd (ψ(−ξ) = −ψ(ξ)).

Hence, eq. 1 can be solved for ξ > 0 with initial conditions of either ψ(0) 6= 0 and

ψ′(0) = 0 (even) or ψ(0) = 0 and ψ′(0) 6= 0 (odd).

In figure 2 the analog program to solve eq. 1 is shown. In the upper half the

Gaussian function is generated by solving the differential equation

d

dξ
f(ξ) = −2ξf(ξ), and f(0) = 1. (3)

One has to be careful about the variable of interest in equations such as 3 because
d
dξ
6= d

dt
(all integrators integrate over time).

In the following ξ is defined as ξ =
√

α
2
t, implying d

dξ
=
√

2
α

d
dt

. With this eq. 3
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can rewritten as √
2

α

d

dt
f(ξ) = −2

√
α

2
tf(ξ)

⇔ d

dt
f(ξ) = −αtf(ξ) and f(0) = 1. (4)

The implementation of eq. 4 can directly be seen in the upper half of the analog

program in figure 2. The lower half implements the two-body Schrödinger equation

in eq. 1. To see this correspondence the equation can be rewritten:

d2

dξ2
ψ(ξ) = −2 [v0f(ξ) + E]ψ(ξ) (5)

⇔

(√
2

α

)2
d2

dt2
ψ(ξ) = −2 [v0f(ξ) + E]ψ(ξ) (6)

⇔ d2

dt2
ψ(ξ) = −α [v0f(ξ) + E]ψ(ξ). (7)

The implementation of eq. 7 in the lower half of figure 2 is straightforward. The

potentiometer for E gets a negative reference input since for a positive potential

depth v0 > 0 the wave function ψ is only bound if the energy is negative. The initial

conditions for ψ in figure 2 are set to generate even solutions.

2 Calculation

In [Thies et al. 2022] binding energies for the three-body system are calculated for

values of the potential depth v0 for which the two-body subsystem has specific energy

values. So for a given energy one is interested in the value of v0, or in other words

the strength of the attractive force between the two particles, for which the two-body

system is bound.

A system is in a bound state, if its wave function ψ remains localized. This implies

that for large values of ξ, ψ tends to zero (limξ→±∞ ψ(ξ) = 0). In the following two-
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Figure 3: Two runs of the analog program for E = −0.1 and α = 0.1 with αt in yellow, f(t :=
√

2
αξ)

in red and ψ(t :=
√

2
αξ) in blue. The potential depth is v0 ≈ 0.342 for the left run and v0 ≈ 0.343

for the right run.

body energies of E = −10−1,−10−2,−10−3 are investigated. The potential depth v0
required for the system to be in a bound state can be derived by varying v0 until ψ is

localized.

This process in depicted in figure 3. The program is set up for E = −0.1 and

α = 0.1 on an Analog Paradigm Model-1. All integrators have a time scale factor of

k0 = 104 with the exception of two integrators with an α = 0.1 scaling in front, which

is absorbed into the time scale factor by setting k0 = 103. With this setup the effect

on ψ by varying v0 can be tested and a bound state of the system can be derived.

In figure 3 it can be seen that even very slight changes of v0 affect ψ. Both of the

states are not bound states, because limξ→±∞ ψ(ξ) 6= 0. However, the two states in

figure 3 suggest that for some value of v0 between 0.342 and 0.343 there is a bound

state. With this process regions of v0 for different values of E, in which the system is

bound, can be derived.
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E
v0

Model-1 [Thies et al. 2022]

−10−1 0.343(1) 0.34459535
−10−2 0.0886(1) 0.08887372
−10−3 0.0250(1) 0.02613437

Table 1: Values of v0 at different energies E. Results from the Model-1 analog computer are compared
with results from [Thies et al. 2022] table 1.

3 Results

In table 1 the results from the analog computer are compared with the results in

[Thies et al. 2022]. The values of v0 derived by the analog computer setup are all

close the theoretical values. For E = −0.1 and E = −0.01 the deviations are less

than 0.5% and for E = −10−3 it is about 5%. The uncertainties given for values of v0
from the Model-1 are derived from the variation of v0 around the bounded state of ψ.

Uncertainties of the analog program due to the limited precision of analog components

are not analysed.
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